Signal Approximation with Fourier Transform based on Scaling Orthonormal Basis Function
نویسنده
چکیده
In this paper, we study the properties of the transform which approximates a signal at a given resolution. We show that the difference of a signal at different resolutions can be extracted by decomposing the signal on a wavelet orthonormal basis. In wavelet orthonormal basis is a family of functions, which is built by dilating and translating a unique function. The development of orthonormal wavelet bases has opened a new bridge between approximation theory and signal processing. It is possible to keep the simplicity while improving the performance with nonlinearities in a sparse representation. The analysis results imply that proposed method has lots of efficiency over other methods.
منابع مشابه
Optimal Wavelet Representation Ofsignals and the Wavelet
The wavelet representation using orthonormal wavelet bases has received widespread attention. Recently M-band orthonormal wavelet bases have been constructed and compactly supported M-band wavelets have been parameterized 15, 12, 32, 17]. This paper gives the theory and algorithms for obtaining the optimal wavelet multiresolution analysis for the representation of a given signal at a predetermi...
متن کاملStructural Similarity-Based Approximation of Signals and Images Using Orthogonal Bases
The structural similarity (SSIM) index has been shown to be an useful tool in a wide variety of applications that involve the assessment of image quality and similarity. However, in-depth studies are still lacking on how to incorporate it for signal representation and approximation problems, where minimal mean squared error is still the dominant optimization criterion. Here we examine the probl...
متن کاملDiscrete fractional Fourier transform based on the eigenvectors of tridiagonal and nearly tridiagonal matrices
The recent emergence of the discrete fractional Fourier transform (DFRFT) has caused a revived interest in the eigenanalysis of the discrete Fourier transform (DFT) matrix F with the objective of generating orthonormal Hermite-Gaussian-like eigenvectors. The Grünbaum tridiagonal matrix T – which commutes with matrix F – has only one repeated eigenvalue with multiplicity two and simple remaining...
متن کاملHigh impedance fault detection: Discrete wavelet transform and fuzzy function approximation
This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different types of mother signals, detail types and feeder signal, the best case is selected. The...
متن کاملA Hypergeometric Basis for the Alpert Multiresolution Analysis
We construct an explicit orthonormal basis of piecewise i+1Fi hypergeometric polynomials for the Alpert multiresolution analysis. The Fourier transform of each basis function is written in terms of 2F3 hypergeometric functions. Moreover, the entries in the matrix equation connecting the wavelets with the scaling functions are shown to be balanced 4F3 hypergeometric functions evaluated at 1, whi...
متن کامل